Loss of intranetwork and internetwork resting state functional connections with Alzheimer's disease progression.

نویسندگان

  • Mathew R Brier
  • Jewell B Thomas
  • Abraham Z Snyder
  • Tammie L Benzinger
  • Dongyang Zhang
  • Marcus E Raichle
  • David M Holtzman
  • John C Morris
  • Beau M Ances
چکیده

Alzheimer's disease (AD) is the most common cause of dementia. Much is known concerning AD pathophysiology but our understanding of the disease at the systems level remains incomplete. Previous AD research has used resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) to assess the integrity of functional networks within the brain. Most studies have focused on the default-mode network (DMN), a primary locus of AD pathology. However, other brain regions are inevitably affected with disease progression. We studied rs-fcMRI in five functionally defined brain networks within a large cohort of human participants of either gender (n = 510) that ranged in AD severity from unaffected [clinical dementia rating (CDR) 0] to very mild (CDR 0.5) to mild (CDR 1). We observed loss of correlations within not only the DMN but other networks at CDR 0.5. Within the salience network (SAL), increases were seen between CDR 0 and CDR 0.5. However, at CDR 1, all networks, including SAL, exhibited reduced correlations. Specific networks were preferentially affected at certain CDR stages. In addition, cross-network relations were consistently lost with increasing AD severity. Our results demonstrate that AD is associated with widespread loss of both intranetwork and internetwork correlations. These results provide insight into AD pathophysiology and reinforce an integrative view of the brain's functional organization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comments on “Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression”

Neuroimaging evidence of disconnection syndrome of Alzheimer’s disease (AD) is extremely fascinating. In the study by Brier et al.,[1] they examined resting-state functional-connectivity magnetic resonance imaging (rs-fcMRI) in 5 functionally defined brain networks: default mode network (DMN), executive control network (CON), salience network (SAL), dorsal attention network (DAN), and sensory-m...

متن کامل

Altered Intranetwork and Internetwork Functional Connectivity in Type 2 Diabetes Mellitus With and Without Cognitive Impairment

Type 2 diabetes mellitus (T2DM) is associated with cognitive impairment. We investigated whether alterations of intranetwork and internetwork functional connectivity with T2DM progression exist, by using resting-state functional MRI. MRI data were analysed from 19 T2DM patients with normal cognition (DMCN) and 19 T2DM patients with cognitive impairment (DMCI), 19 healthy controls (HC). Function...

متن کامل

Influence of Resting-State Network on Lateralization of Functional Connectivity in Mesial Temporal Lobe Epilepsy.

BACKGROUND AND PURPOSE Although most studies on epilepsy have focused on the epileptogenic zone, epilepsy is a system-level disease characterized by aberrant neuronal synchronization among groups of neurons. Increasingly, studies have indicated that mesial temporal lobe epilepsy may be a network-level disease; however, few investigations have examined resting-state functional connectivity of th...

متن کامل

Altered functional networks in long‐term unilateral hearing loss: A connectome analysis

Introduction In neuroimaging studies, long-term unilateral hearing loss (UHL) is associated with functional changes in specific brain regions and connections; however, little is known regarding alterations in the topological organization of whole-brain functional networks and whether these alterations are related to hearing behavior in UHL patients. Methods We acquired resting-state fMRI data...

متن کامل

Node Identification Using Inter-Regional Correlation Analysis for Mapping Detailed Connections in Resting State Networks

Brain function is often characterized by the connections and interactions between highly interconnected brain regions. Pathological disruptions in these networks often result in brain dysfunction, which manifests as brain disease. Typical analysis investigates disruptions in network connectivity based correlations between large brain regions. To obtain a more detailed description of disruptions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 26  شماره 

صفحات  -

تاریخ انتشار 2012